NATIONAL CONSORTIUM FOR

Accuracy and Precision of Digital Forest Measurements.

Grace N. Estep, Purdue University (E-Mail: gestep@purdue.edu); Bowen Li, Purdue University; Guofan Shao, Purdue University; Cameron Wingren, Purdue University; Mike R. Saunders, Purdue University

Introduction

Research Question: Are forest measurements taken using camera imaging accurate enough to apply on an operational scale, and what potential problems need addressed?

Tested Hypotheses:

1) Null: Camera-based systems take unbiased measurements of tree diameter.
2) Any bias in the camera-based measurements is associated with tree eccentricity.

Figures

- Figure 1 - Graphs plot ground measurements against imaging.
- A one-to-one line is inserted to model linearity (orange). Best fit lines with intercept set at zero are included for comparison (dashed red).
- Figure 2 - Deviance was calculated by subtracting average (a) or imaging (b) values from min and max ground measurements.

Results

- The camera-based system underpredicted diameter, as measured by tape, by an average of 8.3% for each cm increase in diameter (Figure 3a)
- Camera-based estimates were closest to the minimum tree diameter, but still underpredicted
- Minimum underprediction bias: 3.9\% (Figure 3b)
- Maximum underprediction bias: 9.4\% (Figure 3c)
- As trees get larger ground measurement deviance changes little (Figure 4a)
- As trees get larger image-based measurements become more accurate (Figure 4b)

Conclusion

- Based on Figure 1, we reject hypothesis 1
- Because smaller trees are more eccentric, data supports hypothesis 2
Diameter measurements derived from camera-based systems are accurate, but biased. These systems need refinement to correct for bias before widespread use.

Figure 1 - Upper and Lower Bound Accuracy of Digital DBH Measurements.

Figure 2 - Deviance of Maximum and Minimum Measurements.

